Ensuring good cellular connections in the brain
Astrocytes are brain cells that, among other things, help neurons form active connections with each other. The exact mechanism behind this process has been a mystery. Scientists in Nicola Allen’s lab have begun to uncover more about these important cells. Allen and first author Isabella Farhy-Tselnicker discovered that astrocytes initiate communication between pairs of neurons by prompting specific changes in neurons through a protein called glypican 4. This protein influences both sending and receiving neurons, helping them make synaptic connections. It may be a target for better understanding neurodevelopmental disorders, such as autism, ADHD and schizophrenia, all of which may result at least partially from faulty communication between neurons. The work was published in Neuron on October 11, 2017.
Featured Stories
- Taking on the Big FiveCancer is not like other diseases. Most conditions have external causes—bacteria, viruses, injury—but cancer comes from inside us. Cells go rogue, divide recklessly, invade other tissues and spread throughout the body. They do things normal cells cannot do.
- Dan Lewis – Intense ConnectionFew trustees have had a connection as intensely personal as new Board Chair Dan Lewis, who knows firsthand that cures, indeed, begin with Salk. Thanks to the research of Salk Professor Tony Hunter, the drug Gleevec was born. And thanks to Gleevec, Lewis survived leukemia.
- Jared SmithNeuroscientist and self-described history geek Jared Smith wants to boldly go where no one has gone before. “If this were the 1400s,” asks Smith, “and we were Europeans exploring the world, where is the new world?” For Smith and colleagues in Xin Jin’s lab, the answer is simple: the brain.