Discoveries
Metabolism
Metabolism
We are working to understand human metabolism and what happens when this biological system breaks down. The problem is more important than ever, given the increasing burden that diabetes and other metabolic dysfunctions have on human health and society.

Metabolism

Immunity
06/2021

“Bad fat” suppresses killer T cells from attacking cancer

In order for cancer to grow and spread, it has to evade detection by our immune cells, particularly specialized “killer” T cells. Professor Susan Kaech, Postdoctoral Fellow and first author Shihao Xu and colleagues have found that the environment inside tumors (the tumor microenvironment) contains an abundance of oxidized fat molecules, which, when ingested by the killer T cells, suppresses their ability to kill cancer cells. The discovery suggests new pathways for safeguarding the immune system’s ability to fight cancer by reducing the oxidative lipid damage in killer T cells, such as blocking a cellular fat transporter called CD36.

Read news release
Nature Comm
06/2021

Research advances one step closer to stem cell therapy for type 1 diabetes

Type 1 diabetes, which arises when the pancreas doesn’t create enough insulin to control levels of glucose in the blood, is a disease that currently has no cure and is difficult for most patients to manage. Now, research led by Juan Carlos Izpisua Belmonte, and including co-first authors Postdoctoral Fellow Ronghui Li, Staff Researcher Hsin-Kai Liao and former Research Associate Haisong Liu, has led to a new way to create insulin-producing pancreatic beta cells from stem cells that is much more efficient than previous methods. When tested in a mouse model, these beta cells brought blood sugar levels under control within about two weeks and could someday lead to better treatments for people with type 1 diabetes.

Read news release
Science Advances
04/2021

Parkinson’s, cancer, type 2 diabetes share a key element that drives disease

When cells are stressed, chemical alarms go off, setting in motion a flurry of activity that protects the cell’s most important players. During the rush, a protein called Parkin hurries to protect the mitochondria, the power stations that generate energy for the cell. Now, Salk Professor Reuben Shaw and colleagues have discovered a direct link between a master sensor of cell stress and Parkin itself. The same pathway is also tied to type 2 diabetes and cancer, which could open a new avenue for treating all three diseases.

Release news release

Sign up for our monthly newsletter.

Latest discoveries, events & more.