How brain cells repair their DNA reveals “hot spots” of aging and disease
Neurons lack the ability to replicate their DNA, so they’re constantly working to repair damage to their genome. A new study by Salk Professor and President Rusty Gage and colleagues reports that these repairs are not random, but instead focus on protecting certain genetic “hot spots” that appear to play a critical role in neural identity and function. The findings give novel insights into the genetic structures involved in aging and neurodegeneration, and could point to the development of potential new therapies for diseases such as Alzheimer’s, Parkinson’s and other age-related dementia disorders.
Share:
[ssba]
Featured Stories
- The aging puzzle comes togetherAging is a complex puzzle, but by applying a collaborative, multidisciplinary approach, Salk scientists are putting its many pieces together.
- Dmitry Lyumkis – A passion for problem solvingAssistant Professor Dmitry Lyumkis discusses what he loves about data and the scientific process, and which places inspire him outside the lab.
- Pamela Maher – Seeking treatments for Alzheimer’s diseaseFrom having a large garden to investigating compounds that plants make, Staff Scientist Pam Maher talks about how plants inspire her to find treatments for Alzheimer’s disease.
- Rajasree Kalagiri – Bound to phosphohistidineRajasree Kalagiri shares the serendipitous steps along her journey of scientific discovery from southern India to Southern California.