Discovery reveals how cells try to control levels of key HIV protein
Salk Professor Katherine Jones, first author Muyu Xu and colleagues discovered a small molecule called JIB-04 that destroys the HIV protein called Tat, responsible for revving up the virus. The molecule, while itself too toxic to serve as a therapy for HIV, reveals enzymes in host cells that can potentially target Tat and halt this runaway replication process. The work was published in PLOS Pathogens on May 23, 2018.
Read News Release
Share:
[ssba]
Featured Stories
- The immune system: a question of balanceThe immune system is a powerful biological force—a liquid organ that permeates our bodies. Diverse immune cells are constantly on patrol, hunting for miscreants to roust: bacteria, viruses, tumors, cellular trash. The immune system keeps us safe in a hostile world...
- Rusty GageComplacency has never been part of Fred (Rusty) Gage’s genetic make-up, neither as he has ascended to the ranks of the world’s most renowned neuroscientists nor as he’s taken the helm as President of the Salk Institute...
- Emily ManoogianWhen Emily Manoogian was growing up, “scientist” wasn’t even on her list of potential careers. First Manoogian wanted to be a Broadway tap dancer; then a gymnast; later, a lawyer; and finally, towards the end of high school, a veterinarian.
Support a legacy where cures begin.
Scientific discovery at the Salk Institute is made possible through your annual contributions. Your support will accelerate the pace of breakthroughs in understanding disease and pave the way to new drug therapies.
Get involved