Discoveries
Metabolism
Metabolism
We are working to understand human metabolism and what happens when this biological system breaks down. The problem is more important than ever, given the increasing burden that diabetes and other metabolic dysfunctions have on human health and society.

Metabolism

Cell Metabolism
10/2022

Time-restricted eating improves health of firefighters

Professor Satchin Panda and team, in collaboration with UC San Diego and the San Diego Fire-Rescue Department, conducted a clinical trial and found that time-restricted eating improved measures of health and wellbeing in firefighters. Eating during a 10-hour window decreased firefighters’ “bad” cholesterol and alcohol intake, as well as improved their mental health, blood sugar, and blood pressure. The researchers also discovered that time-restricted eating may provide even greater benefits for those at risk for cardiometabolic disease and other chronic diseases.

Read More
PNAS
12/2022

Salk scientists develop compound that reverses gut inflammation in mice

A drug developed by Salk Institute researchers acts like a master reset switch in the intestines. The compound, called FexD, was previously found to lower cholesterol, burn fat, and ward off colorectal cancer in mice. Now, co-corresponding authors Professor Ronald Evans and Senior Staff Scientist Michael Downes and colleagues have found that FexD can also prevent and reverse intestinal inflammation in mouse models of inflammatory bowel disease, an umbrella diagnosis that includes both Crohn’s disease and ulcerative colitis. Their research provides new, important information about the complex link between gut health and inflammation that has the potential to lead to an inflammatory bowel disease therapeutic.

Read News Release
Cell Metabolism
01/2023

Time-restricted eating reshapes gene expression throughout the body

Numerous studies have shown health benefits from time-restricted eating, making practices like intermittent fasting a hot topic in the wellness industry. Now, Professor Satchin Panda and team show how time-restricted eating influences gene expression across more than 22 regions of the body and brain in mice. The team found a system-wide, molecular impact of time-restricted eating in mice, and noted that the time-restricted eating aligned the circadian rhythms of multiple organs in the body. The findings have implications for a wide range of health conditions, such as diabetes, heart disease, and cancer.

Read News Release
Nature
01/2023

Supplementation with amino acid serine eases neuropathy in diabetic mice

Approximately half of people with type 1 or type 2 diabetes experience peripheral neuropathy—weakness, numbness, and pain, primarily in the hands and feet. Now, working in mice, Professor Christian Metallo, Postdoctoral Fellow Michal Handzlik, and colleagues have identified another factor contributing to diabetes-associated peripheral neuropathy: altered amino acid metabolism. The researchers were able to alleviate neuropathy symptoms in diabetic mice by supplementing their diets with the amino acid serine. The findings may provide a new way to identify people at high risk for peripheral neuropathy, as well as a potential treatment option.

Read News Release

Sign up for our monthly newsletter.

Latest discoveries, events & more.